
AN INTEGRATED ARCHITECTURE FOR COOPERATING ROVERS

T. Estlin, H. Das, S. Hayati, A. Jain, J. Yen, R. Petras, G. Rabideau, R. Castano, S. Chien, E. Mjolsness,
R. Steele, D. Mutz, A. Gray, T. Mann, D. Decoste, E. Tunstel

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, M/S 126-347, Pasadena, CA 91 109-8099

phone: +1 818 393-5375, fax: +1 818 393-5244, email: {firstname.lastname)@jpl.nasa.gov

ABSTRACT

The paper presents a rover execution architecture for
controlling multiple, cooperating rovers. The overall goal
of this architecture is to coordinate multiple rovers in
performing complex tasks for planetary science. This
architecture integrates a number of systems and research
efforts on single rovers and extends them for multiple
rover operations. Techniques from a number of different
fields are utilized, including AI planning and scheduling,
real-time systems and simulation, terrain modeling and
system kinematics/ dynamics, and AI machine learning.
We discuss each architecture component and describe a
geological scenario we are using to evaluate the overall
architecture.

1 . INTRODUCTION

This paper describes an integrated architecture being
developed at the NASA Jet Propulsion Laboratory for
utilizing multiple cooperating rovers. The overall goal of
this task is to coordinate multiple rovers in performing
complex tasks for planetary surface exploration. Utilizing
multiple rovers has a number of advantages. First, we can
greatly increase mission science return by simultaneously
using complementary instruments on different rovers and
efficiently dividing science gathering tasks between the
rovers. Second, multiple rovers can perform tasks that
otherwise would not be possible using a single rover. For
instance, multiple rovers could be used to take wide
baseline stereo images (where at least two rovers are
required) and rovers landed at different locations could
cover areas with impassable boundaries that would be
unreachable by a single rover. Third, multiple rovers
would enhance mission success through increased system
redundancy. If one rover fails, then its tasks could be
quickly taken over by another rover, helping to ensure
mission success.

This paper describes work in demonstrating how multiple
rovers as compared to a single rover can more effectively
explore a selected site and return more science data per

communication cycle. The described architecture utilizes
research results on single rovers (i.e. command sequence
generation, navigation, control, science operations,
ground control, etc.) from TEUWG and the general
research community and extends them to multiple rovers.
An integrated system architecture has been developed that
can automatically plan for and coordinate multiple rover
activities, and monitor and update activities in response to
anomalous events, and automatically generate interesting
science goals. This architecture also utilizes a multi-rover
simulation environment and control software from the
NASA JPL Rocky 7 rover [Volpe et al., 1997, Hayati &
Arvidson, 19971. Techniques from several different
fields are combined including Artificial Intelligence (AI)
planning and scheduling, real-time systems and
simulation, terrain modeling and system kinematics1
dynamics, and AI machine learning.

The organIzatlon 0 1 ' thls L I I - C ~ ~ I ~ C C ~ ~ I ~ ~ consIb1s 0 1 !hc

following. An AI plann~ng and schedultng systt'm
(CASPER) takes as input a set of sclence goals for
exploring a particular terrain and then automatically
generates plans (i.e. command sequences) that coordinate
several rovers in successfully completing the goals and
exploring the requested areas. The final plan is relayed to
a multi-rover simulation environment (ROAMS) that is
used to simulate the rover terrain and rover operations
within that environment. The simulator also generates
sensor feedback from the rovers which is relayed back to
the planner. This feedback is utilized to determine the
success or failure of certain activities and any changes I n

resource or states. If unexpected changes have occurred,
the planning system can perform re-planning to fix the
original plan and ensure the successful achievement of the
goals. Other relevant pieces of the architecture include an
AI clustering algorithm which generates science goals
based on geology observations, and a machine
learninghounds estimation system which provides
resource modeling for the planner. This paper will
concentrate on describing the planning system and multi-
rover simulator. This architecture is currently being

mailto:firstname.lastname)@jpl.nasa.gov

evaluated using a geological scenario where rovers are
used to examine and classify terrain rocks.

The remainder of this paper is organized as follows. We
begin by characterizing the multiple cooperating rovers
application domain and describing one particular science
scenario. Next, we present out multi-rover execution
architecture which controls and coordinates operations for
a team of rovers and describe each of its components. In
the final sections, we discuss related work, planned future
work, and present our conclusions.

2. COOPERATING ROVERS FOR SCIENCE

Utilizing multiple rovers on planetary science missions
has several main advantages:

F o / w /nult i~~lic~trtion. Multiple rovers can collect
more data than a slngle rover and can perform certain
types of tasks more quickly than a single rover, such
as: performing a geological survey of a region or
deploying a network of seismographic instruments.
We call these cooperative tasks.
Simultaneous presence. Multiple rovers can perform
tasks that are impossible for a single rover. We call
these coordinated tasks. Certain types of instruments,
such as interferometers, require simultaneous
presence at different locations. Rovers landed at
different locations can cover areas with impassable
boundaries. Using communication relays, a line of
rovers can reach longer distances without loss of
contact. More complicated coordinated tasks can also
be accomplished, such as those involved in hardware
construction or repair.
System redundancy. Multiple rovers can be used to
enhance mission success through increased system
redundancy. Several rovers with the same capability
may have higher acceptable risk levels, allowing one
rover, for example, to venture farther despite the
possibility of not returning. Also, because designing
a single rover to survive a harsh environment for a
long periods of time can be difficult, using multiple
~.o\.ers mav enable mlsslons that a single rover could
n o t 5111 \ I \ t' long enough t o accomplish.

In all cases, the rovers can behave in a cooperative or
even coordinated fashion, accepting goals for the team,
performing group tasks and sharing acquired information.

Coordinating distributed rovers for a mission to Mars or
other planet introduces some interesting new challenges
for the supporting technology. Issues arise concerning
interfaces, communication, control and individual on-
board capabilities. For example, different software
components must successfully interface onboard the
rovers to provide the needed autonomous functionality.
In additlon, mission designers will need to decide on

interfaces among the rovers, to the lander and/or orbiter
and to the ground operations teams. Decisions will need
to be made on communication capabilities, which will
limit the amount of information shared between rovers
and the landedorbiter. A distributed control protocol will
need to be selected that defines how tasks are distributed
among rovers and what the "chain of command" is.
Finally, the onboard capabilities will need to be
considered, including computing power and onboard
data-storage capacity.

Many of these design decisions are related, and all of
them have an impact on the onboard technologies that can
be utilized by the mission. The interfaces determine what
activities can be planned for each rover and what data or
sensor feedback can be utilized by the onboard software.
The amount of communication available will determine
how much science or terrain data can be shared among
rovers and will affect how much each rover can
coordinate with other rovers to perform tasks. In
addition, communication capabilities will affect the
amount of onboard autonomy required. If bandwidth is
low and reaction time is critical, a rover will need to react
intelligently to the environment, including performing
intelligent navigation and replan its own activities in
response to unexpected events. The control scheme will
determine what rover executes certain activities and some
rovers may coordinate and monitor and activities of
others. Decisions on the onboard capabilities of each
rover limit the independence of the rover. With only little
computing power, a rover may only be able to execute
commands. More power may allow it to plan command
sequences, replan if necessary, analyze gathered data, and
determine new interesting science goals. Some rovers
may also perform these activities as a service to other
rovers or in cooperation with them.

To evaluate the architecture present in this paper, we have
initially chosen the configuration of a team of three
identical rovers where each rover has a planning and
learning onboard as well as low-level control software for
tasks such as navigation and vision. Each rover can thus
plan for its assigned goals, execute and monitor generated
commands, collect the required data, perform re-planning
if necessary, and perform science analysis onboard to
direct its future goals.

Currently we are evaluating our framework by testing its
ability to build a model of the distribution of surrounding
terrain rocks, classified according to composition as
measure by a boresighted spectrometer. Science goals
consists of requests to take spectral measurements at
certain locations or regions. These goals are prioritized
so that if necessary low priority goals can be preempted

version of the ASPEN system [Fukanaga et al., 19971,
that has been developed to address dynamic planning and
scheduling applications. CASPER employs techniques
from AI planning and scheduling to automatically
generate the necessary rover-activity sequence to achieve
the input goals. This sequence is produced by utilizing an
iterative repair algorithm [Minton and Johnston, 1988;
Zweben, et al., 19941 which classifies conflicts and
attacks them each individually. Conflicts occur when a
plan constraint has been violated where this constraint
could be temporal or involve a resource, state or activity
parameter. Conflicts are resolved by performing one or
more schedule modifications such as moving, adding or
deletlnp an actlvlty Examples of confllcts are a rover
I h a l 1 5 a l 111c Incortt'ct Iocatron for a scheduled science
actl t Ity oI havlng too many actlvltles scheduled for one
rover, whlch oversubscribes its power resources. Figure 2
shows an example rover-plan displayed in the CASPER
GUI interface.

To support mission with multiple rovers, we developed a
distributed planning environment where it is assumed
each rover has an onboard planner. This allows rovers to
plan for themselves andor for other rovers. And, by
balancing the workload, distributed planning can be
helpful when individual computing resources are limited.
Our approach to this problem was to include a CASPER
contlnuous planner for each rover, In addition to a central,
batch planner.

The central planner develops an abstract plan for all
rovers, while each agent planner develops a detailed
executable plan for its own activities. The central planner
also acts as a router, taking a global set of science goals
and dividing it up among the separate rovers. For
example, a science goal may request an image of a
particular rock without concern for which rover acquires
the image. The central planner could assign this goal to
the tover that IS closest t o the rock i n order to minimize
the traversals of all rovers. Thls master slave approach is
Just one approach to distributed planning which could be
utilized for this architecture; we are also experimenting
with several other forms of distributed planning
[Rabideau, et al., 19991.

In order to enhance the quality of the produced schedules,
we have implemented heuristics for assigning rovers to
goals and for deciding on the order in which to visit each
of the specified locations. The heuristics borrow from
algorithms for finding solutions to the Multiple Traveling
Salesman Problem (MTSP) [Johnson et ai., 19971. With
nlultlple rovers coterlng the same area, the planner
prefers paths that mlnlmze the total traverse time of all
the rovers.

Figure 2: Example Rover Plan

To achieve a high level of responsiveness for each
onboard rover planner, we also utilize a continuous
planning approach. Rather than considering planning a
batch process in which a planner is presented with goals
and an initial state, each rover planner has a current goal
set, a current state, a current plan, and state projections
into the future for that plan. At any time, an incremental
update to the goals or current state may update the current
plan. This update may be an unexpected event or simply
time progressing forward. Each onboard planner is then
responsible for maintaining a plan consistent with the
most current information obtained from the rover sensors
and low-level control software. The current plan is the
planner's estimation as to what it expects to happen in the
world if things go as expected. However, since things
rarely go exactly as expected, the planner stands ready to
continually modify the plan to bring the plan back into
sync with the actual rover state.

3.2 ROVER CONTROL SOFTWARE

To handle low-level rover control issues, we have utilized
the Onboard Rover Control & Autonomy Architecture
(ORCAA) software developed for the Rocky 7 rover
[Volpe et al., 1997, Hayati 8c Arvidson, 19971. In the
ORCAA software, asynchronous rover activities are
initiated by a queue of rover commands. These activities
are represented using asynchronous finite state machines
(FSMs) and synchronous data-flow control loops. When
the rover receives a command sequence, these commands
cause state transitions in one of three main state
machines: Navigation, Vision and Manipulation. For
example, in the Navigation FSM, possible states include
"Idling", "Steering", "Driving", etc. State transitions in
these FSMs are used to run different execution methods
and are often used to begin the execution of synchronous

Figure 1 : Multi-rover Execution Architecture

(e.g. due to low battery power). Science goals are divided
among the three rovers. Each rover is identical and is
assumed to have a spectrometer onboard as well as other
resources including a solar panel that provides power for
rover activities, and a battery that provides backup power
when solar power is not available. The battery can also
be recharged using the solar panel when possible.
Collected science data can be transferred to an orbiter
where it is stored in memory.

3 . MULTI-ROVER EXECUTION ARCHITECTURE

The overall system architecture is shown in Figure 1. The
system is comprised of the following major components:

Planning: A dynamic, distributed planning system
that produces rover-operation plans to achieve input
rover science goals. Planning is divided between a
central planner, which efficiently divides up science
goals among rovers, and a distributed set of planners
which plan for operations on an individual rover and
can perform re-planning if necessary.
Rover Control Software: Control software from the
NASA JPL Rocky 7 rover that handles execution of
low-level rover commands in the areas of navigation,
vision and manipulation. This software performs
low-level monitoring and control of each rover's
subsystems.
Multi-Rover Real-Time Simulator: A multi-rover
simulation environment that is used to simulate the
planetary terrain and multi-rover operations within
that environment. This simulator models rover

kinematics and generates sensor feedback which is
relayed back to each rover planner.
Data Analysis: A distributed machine learning
system which performs unsupervised clustering to
model the distribution of rock types observed by the
rovers. This dlstl-lbutlon I S used for priol-lt171ny 11e~
targets f01- cxplorat~on by lllc ro\c1-5 1'111\ I \

used to direct I.o\'el to cont~nuallq ~ m p ~ o \ ~ p t i l l \

model of the scientific content of the planetary scene
Science Simulator: A multi-rover science simulator
that models different geological environments and
rover science activities within them. The
environment simulator manages science data for the
current terrain, tracks rover operations within that
terrain, and reflects readings by rover science
instruments.

The overall system operates in a closed-loop fashion.
Science goals (e.g. take a spectrometer reading at a
certain location) are given to a central planner which
assigns them to individual rovers in a fashion that will
most efficiently serve the requests. Each rover planner
then produces a set of actions for that rover which will
achieve as many of its assigned goals as possible. These
action sequences are executed using the rover low-level
control software and a multi-rover hardware simulation
environment which relay action and state updates back to
each onboard planner. If necessary, each onboard planner
can perform re-planning when unexpected events or
failures occur.

Action sequences are also executed wlthln the
environment simulator and any gathered data is sent to
the rover data analysis modules. These modules form
local models that are broadcast to the central analysis
module. This module forms a global model of the data
and generates a new set of observations goals that will
further improve the accuracy of the model. In this way,
the data analysis system can be seen to take the role of the
scientist driving the exploration process. New goals are
then sent to the centralized planner and he overall cycle
continues until enough data is gathered to produce distinct
models for any observed rock types.

In the next few sections, we discuss each of the
architecture components in more detail.

3.1 DISTRIBUTED, CONTINUOUS PLANNING

To produce individual rover plans for a team of rovers,
we have developed a distributed planning environment
utilizing the CASPER continuous planning system [Chien
et al., 19991. CASPER (Continuous Activity Scheduling,
Planning Execution and Replanntng) I S a n cutcnded

Figure 3 : Three rovers in sample terrain

processes, which perform monitoring and control of the
Rover's subsystems.

This software also relays sensor information and
command updates back to the overlying planning system.
This information includes command updates such as
whether a command was successfully executed and sensor
values such as the current sun angle or level of battery
power.

3.3 MULTI-ROVER REAL-TIME SIMULATION

In order to accomplish preliminary testing of this
architecture, a real-time simulation environment has been
developed using the DARTSIDSHELL software
[Biesiadecki, Henriquez & Jain, 19971. The Rover
Analysis Modeling and Simulation (ROAMS) [Yen et al.,
19991 extension of DARTSDSHELL was first slated
towards modeling single-rover operations and is based on
the NASA JPL Rocky 7 Mars rover. Currently, the
simulator rover model is comprised of its mechanical,
electrical, and sensor subsystems, and is connected with
the on-board (Rocky 7) software. Several terrain models
have been incorporated and we have developed solution
techniques that permit a real-time simulation of the rover
traversing a Mars-like terrain on a workstation platform.
An example situation involving three rovers is shown in
the ROAMS interface in Figure 3.

The basic component of the simulator is the solution of
inverse kinematics for the rover traversing a Mars-like
terrain. Building on this novel solution technique, we
have applied the ROAMS rover simulator to testing
Rocky 7 on-board software. The control and navigation
algorithms of the control software are used to drive the
Rocky 7 rover model against a terrain with randomly
distributed rocks. Applying the DARTS/DSHELL
methodology, we implemented models for hardware
devices, such as a panoramic spectrometer, sun sensor, tilt

sensor, obstacle detection camera, solar panel, battery,
etc., to feed the subsystems. Also, based on the numerical
solution of inverse kinematics, the hardware instrument
models provide high-fidelity synthetic data to test the
control and navigation code. Overall, this environment
permits a fast and better design and implementation of the
rover's software subsystem.

For the multiple rover architecture, this single-rover
simulation model has been extended to support several
cooperating rovers. For this purpose, we developed
additional hardware models, including a collision
avoidance model, an obstacle detection model, models of
power units, and the capability for running multiple
rovers in ROAMS. Due to the stability and accuracy of
the numerical solution, these device models can provide
high quality sample data for the ASPEN planning system.
For example, the power source of Rocky 7, including a
solar panel and a battery, can pl-oduce accul-ate reading of
the power level due to the prediction of the panel's
attitude and the wheel's motor output. As explained
above, these and other sensor values can be fed back to
the planner so that for each rover a valid command
sequence can be consistently maintained. In this paper
we will focus on the collision avoidance model, the
obstacle detection camera model, and the models of
power units.

3.5 SCIENCE-DATA ANALYSIS

To perform sclence ana lys~s . ~e LIS< a nmch ln~~- I ra l n11lg

system whlch performs unsupervlsed clustering 10 model
the distribution of rock types in the observed terraln
[Estlin, et al., 19991. Clustering is performed by a
distributed algorithm where each rover alternates between
independently performing learning computations using its
local data and updating a global-distribution model
through communication among rovers. The model used
for this distribution is a simple K-means-like
unsupervised clustering model, where each cluster
represent a different rock type in the sensor space.
Currently, each sensor reading is a spectral nxasurement
returning values at 14 wavelengths; learnlng takes place
in the full 14-dimensional continuous space. A sample
cluster model (shown for 2 of 14 dimensions) is shown in
Figure 4.

After a new set of science readings is acquired, each rover
sends a small set of parameters, which summarizes its
local data, to the central clusterer. The central module
then integrates this data into an update global model and
broadcasts that model to all rovers in the system. This
process continues iteratively until convergence.

ao

7:

65 -

6G

32 -

45

4D

Figure 4: Example spectra-feature space

Output clusters are also used to help evaluate visible
surfaces for further observation based upon their
"scientific interest." Specifically, the system tries to
increase the accuracy of the clustering model by obtaining
data readings in regions that are likely to improve the
model. F.ach update of the global clustering model
tlctet-mll1t.s a ncu set 01' interesting science goals, i.e.
planetary locations to be explored by the rovers. These
observation goals are then sent as formal goals by the
learner to the planner. Thus, the science analysis system
can be viewed as driving the science process by analyzing
the current data set and then deciding what new and
interesting observations should be made.

3.5 SCIENCE SIMULATOR

A science simulator designed for this particular geological
scenano provides data for the science analysis system by
slmulatlng the data gathering actlvlties of the rover.
Dlfterent MartIan rockscapes are created for use in the
simulator by using distributions over rock types, sizes and
locations. The size and spatial distributions of the
rockfield where developed by examining distributions of
rocks observed by the Viking Landers, Mars Lander and
Mark Pathfinder. The distribution of minerals that can
occur in rocks was developed in collaboration with
planetary geologists at JPL, and the spectra associated
with rocks are generated from the spectra of the
component minerals via a linear-mixing model. When
science measurements are requested from a terrain during
C \ C C I I I I O I I . i-ock and nunt'i-al spectral models are used to
generate sample spectra based on the type of rock being

observed. This data is then communicated to the relevant
rover science-analysis module.

4. RELATED WORK

While there has been a significant amount of work on
cooperating robots, most of it focuses on behavioral
approaches that do not explicitly reason about assigning
goals and planning courses of action. One exception is
GRAMMPS [Bummitt and Stentz, 19881, which
coordinates multiple mobile robots visiting locations in
cluttered, partially known environments. GRAMMPS
also has a low-level planner on each robot, however it
does not look at multiple resource or exogenous events.

Many cooperative robot systems utilize reactive planning
techniques [Mataric, 1995; Parker, 19991. These systems
have been shown to exhibit low-level cooperative
behavior in both known and "noisy" environments.
However, these systems have not been shown useful for
mission planning where a high-level set of science and
engineering goals must be achieved in an efficient
manner.

5. FUTURE WORK

We have a number of planned extensions to this work.
First, we intend to extend the overall architecture to be
more robust and able to handle rover failure situations.
For instance, if a rover fails, the distributed planning
system should recognize this failure (e.g. the rover has
not responded for a certain amount of time), refrain from
sending any new goals to that rover, and re-assign any
current goals assigned to that rover.

We plan to increase the fidelity of the simulation by
adding models of onboard cameras and other instruments,
and extending the simulator to model communication
between each rover. Currently, it is assumed rovers share
science data through the central data-analysis model,
however this communication is not explicitly represented
in the simulator. We would also like rovers to share plan
information which would allow them to directly
coordinate with each other during plan execution, and
would allow us to experiment with different forms of
distributed planning which require communication among
agents. These extensions will allows for more realistic
testing of the architecture.

We also plan to extend the multi-rover simulator and
planning model to represent more extensive
communication between each rover. Currently, rovers
share science data through the central data-analysis

module. We would like rovers to also share plan
information. This would allow rovers to directly
coordinate with each other during plan execution and
would enable us to experiment with different forms of
distributed planning, such as team-based strategies
[Tambe, 19971 or market-based approaches [Sandholm,
19931 to multi-agent coordination.

Last, we plan on testing the overall architecture in a more
realistic setting using actual rovers as opposed to the
hardware and science simulators described previously.
This testing will occur in the JPL Mars yard using rovers
such as JPL’s Rocky 7 and Rocky 8.

6. CONCLUSION

In conclusion, using multiple rovers can greatly increase
the capabilities and science return of a mission. In this
paper we have presented an integrated architecture that
combines techniques from several fields to effectively
plan for and coordinate rover activities, execute these
activities in a real-time environment simulator, monitor
rover-execution status, and effectively respond to
unexpected events through re-planning. This integrated
system exhibits great potentials for advanced applications
in areas of design, engineering, and distributed planning
for mobile robotic systems.

ACKNOWLEDGEMENTS

This work as performed by the Jet Propulsion Laboratory,
California Institute of Technology, under contract with
the National Aeronautics and Space Administration.

REFERENCES

Biesiadecki, J., Henriquez, D., and Jain, A., “A Reusable,
Real-Time Spacecraft Dynamics Simulator,” Proceedings
of the Sixth Digital Avionics Systems Conference, Imine,
CA, October 1997.

Bummit, B., and Stentz, A., “GRAMMPS: A Generalized
mission planner for multiple robots in unstructured
environments,” Proceedings of the IEEE Conference on
Robotics and Automation, 1988.

Chien, S., Knight, R., Stechert, A., Sherwood, R., and
Rabideau, G., “Integrated Planning and Execution for
Autonomous Spacecraft,” Proceedings of the 1999 IEEE
Aerospace Conference, Aspen, CO, March, 1999.

of the Sixteenth National Conference on
(AAAI-99), Orlando, FL July 1999.

A., Rabideau, G., Chien, S., and Yan, D.,
an Application Framework for Automated
and Scheduling,” Proceedings of the 1997

Symposium of A r t @ ’ a l Intelligence,
f o l - Spec) (iSAIRAS-97).

and Arvidson, R., “Long Range Science Rover
Mojave Desert Field Tests,” Proceedings of the

Symposium on Artificial Intelligence,
in Space (iSAIRAS-97), Tokyo,

Johnson,
A Case Study in Local Optimization.” Local Problem

D. and McGeoch, L., “The Traveling Salesman

J., eds., John Wiley and Sons, London, 1997, pp. Lenstra,,
in Combinatorial Optimization, Aarts, E. and Search

215-310,

M., “Designing and Understanding Adaptive
Adaptive Behavior, 4(1):5 1-80,

and Johnston, M. “Minimizing Conflicts: A
Method for Constraint Satisfaction and

ArtiJicial Intelligence, 58: 161 -

“Cooperative Robotics for Multi-Target
Intelligent Automutwn r m l Soft

Estlin, T. Chien, S. and Barrett, T., “A
of Coordinated Planning Methods for

Rovers,” Submitted to the AIAA99 Space
Conference, Albuquerque, NM, September,

1999.

, T., “An Implementation of the Contract Net
Based on Marginal Cost Calculations,” In

o f the Elewwth ,V(~tion(/l COII/PIY,II((’ 0 1 1

Waslungton. D C ~ . . J u l y I993

Flexible Teamwork,” h u r n d of
Research, 7:83-124, 1997.

Volpe, R., Balaram, J., Ohm, T., and Ivlev, R., “Rocky 7:
A Wext Generation Mars Rover Prototype,” Journal qf Zweben, M., Daun, B., Davis, E., and Deale, M.,

I t / n r ~ r t ~ c , t / R/J/)o/ / (, . \ . I l (4) . Decembet 1997. “Scheduling and Rescheduling with Iterative Repair,”
lntelligent Scheduling, Zweben, M., and Fox, M., eds.,

Yen. J . , Jam, A , , and Balaram, J . , “ROAMS: Rover Morgan Kaufmann, 1994, pp.241-256.
Analysis, Modeling and Simulation Software,” In
progress.

